SGD
Implements stochastic gradient descent.
Learn more about SGD (opens in a new tab)
Usage
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from models.resnet import ResNet
model = ResNet()
for _ in range(5):
optimizer = optim.SGD(get_parameters(model), lr=0.01)
# train, eval ...
Arguments
params
The parameters of the model to optimize.
lr (default: 0.001)
The learning rate of the SGD optimizer.
momentum (default: 0.0)
The momentum factor.
weight_decay (default: 0.0)
The weight decay factor.
nesterov (default: False)
The nesterov factor.