Tensor.batchnorm()
Return the batch normalization of the input tensor.
Usage
from tinygrad.tensor import Tensor
a1 = Tensor([
[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[9, 10], [11, 12]], [[13, 14], [15, 16]]]
])
mean_data = Tensor([2.5, 7.5])
invstd_data = Tensor([0.1, 0.2])
tensor = a1.batchnorm(None, None, mean_data, invstd_data)
print(tensor.numpy())
Return value
[[[[-0.15 -0.05 ]
[ 0.05 0.15 ]]
[[-0.5 -0.3 ]
[-0.1 0.1 ]]]
[[[ 0.65000004 0.75 ]
[ 0.85 0.95 ]]
[[ 1.1 1.3000001 ]
[ 1.5 1.7 ]]]]