LayerNorm
Applies Layer Normalization over a mini-batch of inputs as described in the paper Layer Normalization (opens in a new tab).
Usage
from tinygrad.nn import LayerNorm
dims=[96, 192, 384, 768]
ln = LayerNorm(dims[-1])
Arguments
normalized_shape
The shape of the input tensor from an expected input of size batch_size x * x * input_dim. If input_dim is omitted, it is automatically inferred as the last dimension of the input tensor.
eps (default: 1e-5)
The epsilon value to use to avoid division by zero.
elementwise_affine (default: True)
The elementwise affine operation applies a separate set of weights and biases for each channel (dimension) of the input.